3.439 \(\int \frac{(A+B x) \sqrt{a+c x^2}}{(e x)^{5/2}} \, dx\)

Optimal. Leaf size=298 \[ \frac{2 \sqrt [4]{c} \sqrt{x} \left (\sqrt{a}+\sqrt{c} x\right ) \sqrt{\frac{a+c x^2}{\left (\sqrt{a}+\sqrt{c} x\right )^2}} \left (3 \sqrt{a} B+A \sqrt{c}\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{3 \sqrt [4]{a} e^2 \sqrt{e x} \sqrt{a+c x^2}}-\frac{2 \sqrt{a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}+\frac{4 B \sqrt{c} x \sqrt{a+c x^2}}{e^2 \sqrt{e x} \left (\sqrt{a}+\sqrt{c} x\right )}-\frac{4 \sqrt [4]{a} B \sqrt [4]{c} \sqrt{x} \left (\sqrt{a}+\sqrt{c} x\right ) \sqrt{\frac{a+c x^2}{\left (\sqrt{a}+\sqrt{c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{e^2 \sqrt{e x} \sqrt{a+c x^2}} \]

[Out]

(-2*(A + 3*B*x)*Sqrt[a + c*x^2])/(3*e*(e*x)^(3/2)) + (4*B*Sqrt[c]*x*Sqrt[a + c*x^2])/(e^2*Sqrt[e*x]*(Sqrt[a] +
 Sqrt[c]*x)) - (4*a^(1/4)*B*c^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[c]*x)*Sqrt[(a + c*x^2)/(Sqrt[a] + Sqrt[c]*x)^2]*El
lipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(e^2*Sqrt[e*x]*Sqrt[a + c*x^2]) + (2*(3*Sqrt[a]*B + A*Sqrt[
c])*c^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[c]*x)*Sqrt[(a + c*x^2)/(Sqrt[a] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4
)*Sqrt[x])/a^(1/4)], 1/2])/(3*a^(1/4)*e^2*Sqrt[e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.287272, antiderivative size = 298, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {811, 842, 840, 1198, 220, 1196} \[ \frac{2 \sqrt [4]{c} \sqrt{x} \left (\sqrt{a}+\sqrt{c} x\right ) \sqrt{\frac{a+c x^2}{\left (\sqrt{a}+\sqrt{c} x\right )^2}} \left (3 \sqrt{a} B+A \sqrt{c}\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{a} e^2 \sqrt{e x} \sqrt{a+c x^2}}-\frac{2 \sqrt{a+c x^2} (A+3 B x)}{3 e (e x)^{3/2}}+\frac{4 B \sqrt{c} x \sqrt{a+c x^2}}{e^2 \sqrt{e x} \left (\sqrt{a}+\sqrt{c} x\right )}-\frac{4 \sqrt [4]{a} B \sqrt [4]{c} \sqrt{x} \left (\sqrt{a}+\sqrt{c} x\right ) \sqrt{\frac{a+c x^2}{\left (\sqrt{a}+\sqrt{c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{e^2 \sqrt{e x} \sqrt{a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*Sqrt[a + c*x^2])/(e*x)^(5/2),x]

[Out]

(-2*(A + 3*B*x)*Sqrt[a + c*x^2])/(3*e*(e*x)^(3/2)) + (4*B*Sqrt[c]*x*Sqrt[a + c*x^2])/(e^2*Sqrt[e*x]*(Sqrt[a] +
 Sqrt[c]*x)) - (4*a^(1/4)*B*c^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[c]*x)*Sqrt[(a + c*x^2)/(Sqrt[a] + Sqrt[c]*x)^2]*El
lipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(e^2*Sqrt[e*x]*Sqrt[a + c*x^2]) + (2*(3*Sqrt[a]*B + A*Sqrt[
c])*c^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[c]*x)*Sqrt[(a + c*x^2)/(Sqrt[a] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4
)*Sqrt[x])/a^(1/4)], 1/2])/(3*a^(1/4)*e^2*Sqrt[e*x]*Sqrt[a + c*x^2])

Rule 811

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((d + e*x)^
(m + 1)*(a + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e
^2) + 2*c*d*p*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2
+ a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p + 1
) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2
, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 842

Int[((f_) + (g_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[x]/Sqrt[e*x], Int[
(f + g*x)/(Sqrt[x]*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c, e, f, g}, x]

Rule 840

Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2, Subst[Int[(f + g*x^2)/Sqrt[
a + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, c, f, g}, x]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{(A+B x) \sqrt{a+c x^2}}{(e x)^{5/2}} \, dx &=-\frac{2 (A+3 B x) \sqrt{a+c x^2}}{3 e (e x)^{3/2}}-\frac{2 \int \frac{-a A c e^2-3 a B c e^2 x}{\sqrt{e x} \sqrt{a+c x^2}} \, dx}{3 a e^4}\\ &=-\frac{2 (A+3 B x) \sqrt{a+c x^2}}{3 e (e x)^{3/2}}-\frac{\left (2 \sqrt{x}\right ) \int \frac{-a A c e^2-3 a B c e^2 x}{\sqrt{x} \sqrt{a+c x^2}} \, dx}{3 a e^4 \sqrt{e x}}\\ &=-\frac{2 (A+3 B x) \sqrt{a+c x^2}}{3 e (e x)^{3/2}}-\frac{\left (4 \sqrt{x}\right ) \operatorname{Subst}\left (\int \frac{-a A c e^2-3 a B c e^2 x^2}{\sqrt{a+c x^4}} \, dx,x,\sqrt{x}\right )}{3 a e^4 \sqrt{e x}}\\ &=-\frac{2 (A+3 B x) \sqrt{a+c x^2}}{3 e (e x)^{3/2}}-\frac{\left (4 \sqrt{a} B \sqrt{c} \sqrt{x}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+c x^4}} \, dx,x,\sqrt{x}\right )}{e^2 \sqrt{e x}}+\frac{\left (4 \left (3 \sqrt{a} B+A \sqrt{c}\right ) \sqrt{c} \sqrt{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+c x^4}} \, dx,x,\sqrt{x}\right )}{3 e^2 \sqrt{e x}}\\ &=-\frac{2 (A+3 B x) \sqrt{a+c x^2}}{3 e (e x)^{3/2}}+\frac{4 B \sqrt{c} x \sqrt{a+c x^2}}{e^2 \sqrt{e x} \left (\sqrt{a}+\sqrt{c} x\right )}-\frac{4 \sqrt [4]{a} B \sqrt [4]{c} \sqrt{x} \left (\sqrt{a}+\sqrt{c} x\right ) \sqrt{\frac{a+c x^2}{\left (\sqrt{a}+\sqrt{c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{e^2 \sqrt{e x} \sqrt{a+c x^2}}+\frac{2 \left (3 \sqrt{a} B+A \sqrt{c}\right ) \sqrt [4]{c} \sqrt{x} \left (\sqrt{a}+\sqrt{c} x\right ) \sqrt{\frac{a+c x^2}{\left (\sqrt{a}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{a} e^2 \sqrt{e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0307029, size = 82, normalized size = 0.28 \[ -\frac{2 x \sqrt{a+c x^2} \left (A \, _2F_1\left (-\frac{3}{4},-\frac{1}{2};\frac{1}{4};-\frac{c x^2}{a}\right )+3 B x \, _2F_1\left (-\frac{1}{2},-\frac{1}{4};\frac{3}{4};-\frac{c x^2}{a}\right )\right )}{3 (e x)^{5/2} \sqrt{\frac{c x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*Sqrt[a + c*x^2])/(e*x)^(5/2),x]

[Out]

(-2*x*Sqrt[a + c*x^2]*(A*Hypergeometric2F1[-3/4, -1/2, 1/4, -((c*x^2)/a)] + 3*B*x*Hypergeometric2F1[-1/2, -1/4
, 3/4, -((c*x^2)/a)]))/(3*(e*x)^(5/2)*Sqrt[1 + (c*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.028, size = 303, normalized size = 1. \begin{align*}{\frac{2}{3\,x{e}^{2}} \left ( A\sqrt{{ \left ( cx+\sqrt{-ac} \right ){\frac{1}{\sqrt{-ac}}}}}\sqrt{2}\sqrt{{ \left ( -cx+\sqrt{-ac} \right ){\frac{1}{\sqrt{-ac}}}}}\sqrt{-{cx{\frac{1}{\sqrt{-ac}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( cx+\sqrt{-ac} \right ){\frac{1}{\sqrt{-ac}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-ac}x-3\,B\sqrt{{\frac{cx+\sqrt{-ac}}{\sqrt{-ac}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-ac}}{\sqrt{-ac}}}}\sqrt{-{\frac{cx}{\sqrt{-ac}}}}{\it EllipticF} \left ( \sqrt{{\frac{cx+\sqrt{-ac}}{\sqrt{-ac}}}},1/2\,\sqrt{2} \right ) xa+6\,B\sqrt{{\frac{cx+\sqrt{-ac}}{\sqrt{-ac}}}}\sqrt{2}\sqrt{{\frac{-cx+\sqrt{-ac}}{\sqrt{-ac}}}}\sqrt{-{\frac{cx}{\sqrt{-ac}}}}{\it EllipticE} \left ( \sqrt{{\frac{cx+\sqrt{-ac}}{\sqrt{-ac}}}},1/2\,\sqrt{2} \right ) xa-3\,Bc{x}^{3}-Ac{x}^{2}-3\,aBx-aA \right ){\frac{1}{\sqrt{c{x}^{2}+a}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x)

[Out]

2/3/x*(A*((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*(-x*c/(-a*c)
^(1/2))^(1/2)*EllipticF(((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2),1/2*2^(1/2))*(-a*c)^(1/2)*x-3*B*((c*x+(-a*c)^(
1/2))/(-a*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*(-x*c/(-a*c)^(1/2))^(1/2)*EllipticF
(((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2),1/2*2^(1/2))*x*a+6*B*((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*2^(1/2)*
((-c*x+(-a*c)^(1/2))/(-a*c)^(1/2))^(1/2)*(-x*c/(-a*c)^(1/2))^(1/2)*EllipticE(((c*x+(-a*c)^(1/2))/(-a*c)^(1/2))
^(1/2),1/2*2^(1/2))*x*a-3*B*c*x^3-A*c*x^2-3*a*B*x-a*A)/(c*x^2+a)^(1/2)/e^2/(e*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}{\left (B x + A\right )}}{\left (e x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)*(B*x + A)/(e*x)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{2} + a}{\left (B x + A\right )} \sqrt{e x}}{e^{3} x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*(B*x + A)*sqrt(e*x)/(e^3*x^3), x)

________________________________________________________________________________________

Sympy [C]  time = 15.2279, size = 104, normalized size = 0.35 \begin{align*} \frac{A \sqrt{a} \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, - \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{c x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac{5}{2}} x^{\frac{3}{2}} \Gamma \left (\frac{1}{4}\right )} + \frac{B \sqrt{a} \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{c x^{2} e^{i \pi }}{a}} \right )}}{2 e^{\frac{5}{2}} \sqrt{x} \Gamma \left (\frac{3}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x**2+a)**(1/2)/(e*x)**(5/2),x)

[Out]

A*sqrt(a)*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), c*x**2*exp_polar(I*pi)/a)/(2*e**(5/2)*x**(3/2)*gamma(1/4)) +
 B*sqrt(a)*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), c*x**2*exp_polar(I*pi)/a)/(2*e**(5/2)*sqrt(x)*gamma(3/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}{\left (B x + A\right )}}{\left (e x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+a)^(1/2)/(e*x)^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)*(B*x + A)/(e*x)^(5/2), x)